First you need to get the actual msds for the specific chemical that you will be researching.
Just because it says X chemical does not mean it is the actual one that will be used
I know that does not answer your question, but an important point
From 2009 IFC
Top Previous Section Next Section To view the next subsection please select the Next Section option.
SECTION E103 EVALUATION OF HAZARDS
E103.1 Degree of hazard. The degree of hazard present depends on many variables which should be considered individually and in combination. Some of these variables are as shown in Sections E103.1.1 through E103.1.5.
E103.1.1 Chemical properties of the material. Chemical properties of the material determine self reactions and reactions which may occur with other materials. Generally, materials within subdivisions of hazard categories will exhibit similar chemical properties. However, materials with similar chemical properties may pose very different hazards. Each individual material should be researched to determine its hazardous properties and then considered in relation to other materials that it might contact and the surrounding environment.
E103.1.2 Physical properties of the material. Physical properties, such as whether a material is a solid, liquid or gas at ordinary temperatures and pressures, considered along with chemical properties will determine requirements for containment of the material. Specific gravity (weight of a liquid compared to water) and vapor density (weight of a gas compared to air) are both physical properties which are important in evaluating the hazards of a material.
E103.1.3 Amount and concentration of the material. The amount of material present and its concentration must be considered along with physical and chemical properties to determine the magnitude of the hazard. Hydrogen peroxide, for example, is used as an antiseptic and a hair bleach in low concentrations (approximately 8 percent in water solution). Over 8 percent, hydrogen peroxide is classed as an oxidizer and is toxic. Above 90 percent, it is a Class 4 oxidizer "that can undergo an explosive reaction when catalyzed or exposed to heat, shock or friction," a definition which incidentally also places hydrogen peroxide over 90-percent concentration in the unstable (reactive) category. Small amounts at high concentrations may present a greater hazard than large amounts at low concentrations.
E103.1.3.1 Mixtures. Gases—toxic and highly toxic gases include those gases that have an LC50 of 2,000 parts per million (ppm) or less when rats are exposed for a period of 1 hour or less. To maintain consistency with the definitions for these materials, exposure data for periods other than 1 hour must be normalized to 1 hour. To classify mixtures of compressed gases that contain one or more toxic or highly toxic components, the LC50 of the mixture must be determined. Mixtures that contain only two components are binary mixtures. Those that contain more than two components are multicomponent mixtures. When two or more hazardous substances (components) having an LC50 below 2,000 ppm are present in a mixture, their combined effect, rather than that of the individual substance components, must be considered. In the absence of information to the contrary, the effects of the hazards present must be considered as additive. Exceptions to the above rule may be made when there is a good reason to believe that the principal effects of the different harmful substances (components) are not additive.
For binary mixtures where the hazardous component is diluted with a nontoxic gas such as an inert gas, the LC50 of the mixture is estimated by use of the methodology contained in CGA P-20. The hazard zones specified in CGA P-20 are applicable for DOTn purposes and shall not be used for hazard classification.
E103.1.4 Actual use, activity or process involving the material. The definition of handling, storage and use in closed systems refers to materials in packages or containers. Dispensing and use in open containers or systems describes situations where a material is exposed to ambient conditions or vapors are liberated to the atmosphere. Dispensing and use in open systems, then, are generally more hazardous situations than handling, storage or use in closed systems. The actual use or process may include heating, electric or other sparks, catalytic or reactive materials and many other factors which could affect the hazard and must therefore be thoroughly analyzed.
E103.1.5 Surrounding conditions. Conditions such as other materials or processes in the area, type of construction of the structure, fire protection features (e.g., fire walls, sprinkler systems, alarms, etc.), occupancy (use) of adjoining areas, normal temperatures, exposure to weather, etc., must be taken into account in evaluating the hazard.
E103.2 Evaluation questions. The following are sample evaluation questions:
1. What is the material? Correct identification is important; exact spelling is vital. Check labels, MSDS, ask responsible persons, etc.
2. What are the concentration and strength?
3. What is the physical form of the material? Liquids, gases and finely divided solids have differing requirements for spill and leak control and containment.
4. How much material is present? Consider in relation to permit amounts, maximum allowable quantity per control area (from Group H occupancy requirements), amounts which require detached storage and overall magnitude of the hazard.
5. What other materials (including furniture, equipment and building components) are close enough to interact with the material?
6. What are the likely reactions?
7. What is the activity involving the material?
8. How does the activity impact the hazardous characteristics of the material? Consider vapors released or hazards otherwise exposed.
9. What must the material be protected from? Consider other materials, temperature, shock, pressure, etc.
10. What effects of the material must people and the environment be protected from?
11. How can protection be accomplished? Consider:
11.1. Proper containers and equipment.
11.2. Separation by distance or construction.
11.3. Enclosure in cabinets or rooms.
11.4. Spill control, drainage and containment.
11.5. Control systems-ventilation, special electrical, detection and alarm, extinguishment, explosion venting, limit controls, exhaust scrubbers and excess flow control.
11.6. Administrative (operational) controls-signs, ignition source control, security, personnel training, established procedures, storage plans and emergency plans.
Evaluation of the hazard is a strongly subjective process; therefore, the person charged with this responsibility must gather as much relevant data as possible so that the decision will be objective and within the limits prescribed in laws, policies and standards.
It may be necessary to cause the responsible persons in charge to have tests made by qualified persons or testing laboratories to support contentions that a particular material or process is or is not hazardous. See Section 104.7.2 of the International Fire Code.
Top Previous Section Next Section To view the next subsection please select the Next Section option.